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Abstract  
	
Mass spectrometry imaging (MSI) is used in an  increasing number of biological applications. Typical MSI datasets  contain unique, high-resolution 

mass spectra from tens  of  thousands of  spatial locations, resulting in  raw data sizes of tens of gigabytes per sample. In this paper, we review 
technical progress that is enabling new biological applications and that is driving an  increase in the complexity and size  of MSI  data. Handling such 
data often requires specialized computational infrastructure, software, and expertise. OpenMSI, our recently described platform, makes it easy to 
explore and share MSI datasets via the web e even when larger than 50  GB. Here we  describe the integration of  OpenMSI with IPython notebooks 
for  transparent, sharable, and replicable MSI research. An advantage of this approach is that users do  not have to share raw data along with analyses; 
instead, data is retrieved via  OpenMSI's web API. The  IPython notebook interface provides a  low-barrier entry point for  data manipulation that is 
accessible for  scientists without extensive computational training. Via these notebooks, analyses can  be easily shared without requiring any data 
movement. We  provide example notebooks for several common MSI analysis types including data normalization, plotting, clustering, and classification, 
and image registration. 





 	
	
	

Mass  spectrometry is usually carried out  on  homogenized 
samples. Homogenization, whether  achieved by  mechanical pul- 
verization  or  chemical extraction,  destroys  information  on   the 
spatial distribution of analytes in  the sample. Mass  spectrometry 
imaging (MSI) seeks to eliminate this information loss and to obtain 
both chemical and spatial information on  analyzed  samples.  As 
such, it cannot rely  on  complete homogenization of samples. 

Recent years have seen tremendous improvements in  instru- 
mental capabilities for MSI [22,47]. In this perspective, we  discuss 
how the advances in  instrument design and sample preparation 
have led  to new challenges for  MSI users, especially the size  and 
complexity of  the resulting datasets. We  then show how Open- 
MSIea web-accessible repository for  MSI data and a platform for 
sharing and analyzing dataein  combination with sharable pro- 
gramming notebooks based on  IPython can  address these chal- 
lenges, and demonstrate practical application of this idea by 
providing example notebooks performing two common types of 
MSI analyses. The  article focuses primarily on  soft-ionization 
techniques due to the greater chemical information content they 
provide. 
	

1.  Better instrumentation leads to bigger, more complex data 
	

Here we  review instrumental advances that are  leading to 
increasing spatial resolution of MSI data and also  the orthogonal 
instrumental improvements that increase chemical “resolution”. 
Higher spatial resolution  leads to  an  increase in  the number of 
pixels in  an  MSI image, and higher chemical resolution increases 
the complexity (or  number) of the mass spectra recorded at  each 
pixel. Simultaneously making use  of improvements in both spatial 
and chemical resolution thus strongly increases the data size  and 
complexity of MSI images, as we  discuss below. 
	

1.1.  Instrumental improvements: spatial resolution 
	

Spatial resolution in the single mm range, required for single-cell 
analysis of  bacteria and also  of  many eukaryotic cells,  has  been 
generally inaccessible for MSI analyses that rely  on  soft ionization 
techniques such as matrix-assisted laser desorption (MALDI) or 
desorption via electrospray impact (DESI). Hard-ionization tech- 
niques, such as  SIMS or  nanoSIMS, easily reach these  resolutions, 
and have been the subject of several recent reviews [26,41], but the 
harsh  ionization conditions lead to  analyte  fragmentation  into 
atoms or very small molecular fragments. Here our  focus  is on soft- 
ionization techniques, which can  provide information on  the 
abundance of intact metabolites, lipids, peptides, and proteins. 
Recent improvements discussed below are  allowing even soft- 
ionization techniques to approach this single-cell limit. The x-axis 
of Fig. 1A shows obtainable spatial resolution for  the most widely 
used ionization techniques. 
	

1.1.1.   Laser rastering techniques 
The  most popular and widespread means of collected spatially 

resolved mass spectra is by laser rastering over a sample surface. 
Matrix-assisted laser desorption ionization (MALDI) mass spec- 
trometers usually use  this imaging mode. Vendors usually fix  the 
laser optics in a single position, and an XY-stage moves the sample 

across the  incident  laser beam. Spatial resolution  can   thus  be 
limited by  (a)  the laser spot size  and (b)  the precision of the XY- 
stage [64].  Today's commercial MALDI-MS instruments have laser 
spot sizes that are  in the range of 10e200 mm, and XY-stages with 
1e10 mm translational precision. 

Laser  spot sizes thus usually constrain obtainable resolution. 
Oversampling techniques  can   improve spatial resolution to  the 
limits of the XY-stage [23].  In Jurchen's implementation of this 
technique, a laser with a 100  x 200  mm  spot size  was repeatedly 
fired at  a  fixed position until the  sample ions   were no  longer 
detected. A translation of the XY stage by 25  mm increments after 
analyte depletion brings fresh sample into the laser spot, allowing 
attribution of new signal to the 25 mm-region newly moved into the 
beam. Improved laser optics have also  been reported that reduce 
laser spot sizes in MALDI-MS to about 2 mm [13,62]. A limitation of 
all rastering techniques is that increases in  spatial resolution also 
increase data acquisition time. 

“Ion microscopy”. Heeren and co-workers have accelerated MSI 
acquisition times by  developing a  unique imaging mode for  MSI 
that relies on  spatially resolved detection of  ions  ejected from a 
sample, rather than spatially resolved ionization. They  term this 
mode “ion microscopy” and have demonstrated it using MALDI [22] 
ionization  techniques.  Their   technique  takes  spatially-resolved 
mass spectra “inside of” the laser spot of a MALDI-type ionization 
system, allowing for  much larger laser spot sizes (~200 mm)  and 
faster acquisition times. Large  sample images are  constructed as 
mosaics of these single-spot images as the laser rasters across an 
image surface. Spatial resolution is thus independent of the laser 
spot size and is instead dictated by both the magnification inherent 
to the ion optics of the mass spectrometer, as well  as the pixel sizes 
of the ion detector. Imaging resolution with ion microscopy of 6 mm 
has  been reported. The  same detector style can  also  be  used for 
secondary-ion  based ionization [28]; spatial resolving power  of 
7 mm was demonstrated. 
	
	
1.1.2.   Desorption electrospray ionization (DESI) 

Desorption electrospray ionization simplifies sample prepra- 
tion, and unlike many laser ionization techniques, can  work at at- 
mospheric pressure. In DESI, an  electrospray of solvent droplets 
impacts the sample surface, causing desorption and ionization of 
analyte molecules. The  electrospray is generated from two nested 
capillaries. The inner capillary contains the electrosprayed solvent, 
and the outer one contains a heated gas stream. The first example of 
using a solvent electrospray to perform MSI was reported in 2004 
[51].  DESI does not require a  matrix or  initiator to  absorb laser 
energy and initiate ionization. 

Early   examples  of  DESI  MSI  reported  spatial  resolution  of 
100e250  mm  [52,58], but other studies have identified variables 
that control spatial resolution in DESI and improved resolution to 
35 mm [8,10]. Variables strongly affecting spatial resolution include 
solvent flow rate, XY-stage step size, and the geometric orientation 
of the electrospray emitter relative to the mass spectrometer [8]. 
Additionally, the penetration of solvent from electrospray droplets 
into the  sample can   partially dissolve and  distort  the  sample, 
decreasing spatial resolution, but altering solvent composition can 
ameliorate  this effect. N,N-dimethylformamide:ethanol  mixtures 
were superior to  methanol:water mixtures in  this regard. Use  of 



	
	

 
	

Fig. 1.  Increased technological improvements are increasing the sizes for MSI datasets as illustrated by (A) an estimation of data size  required for MSI analysis of human brain and as 
evidenced by (B) growth in real data stored in OpenMSI. Shown in (A) is a projected estimate for  file  size  of an  MSI data set of a single cross-section through a human brain using 
various techniques. As  advances in  spatial and mass resolution are combined with new dimensions including ion  mobility separation and MS2,  raw data sizes will  increase 
dramatically. This  growth is already evident today in the growth in the total size  (B), terabytes of web-accessible data (C), and number of real MSI data sets (D) stored in OpenMSI. 

	
	

“nanospray”-sized  capillaries  to   direct   the   electrospray   can 
improve resolution down to 12 mm [30]. 
	

1.1.3.   Other  ionization techniques 
Although MALDI and DESI are  the most widely used ionization 

techniques for mass spectrometry imaging, many groups continue 
to  research other means for  sample ionization and have reported 
impressive improvements. Several reviews have summarized 
progress in  this area [12,15,16,45]. Most techniques rely  on  either 
laser shots, electrospray, or  combinations of both to  achieve ioni- 
zation. Thus,  obtainable spatial resolution is  likely  to  be  broadly 
similar to what has  been achieved for MALDI or DESI. 
	

1.2.  Instrumental improvements in MSI: chemical resolution 
	

The  goal  of MSI is the spatial mapping of the molecular 
composition of complex samples. Molecular composition must be 
inferred from mass spectra and knowledge of  the bulk average 
composition of similar samples. We  use  the term “chemical “res- 
olution” loosely to indicate the degree to which related compounds 
that originate from the same location of  the sample can  be 
distinguished. 
	

1.2.1.   High-resolution mass  detectors 
Mass  spectrometry separates ions  on the basis of their mass-to- 

charge ratio (m/z). In this context, resolution has  a specific, precise 
meaning:  how close can   two ions   be  in  their  m/z and still   be 
resolved by  the detector? Widely available quadrupole detectors 
offer   ~1   Da   resolution,  but  time-of-flight  (TOF)  and  Orbitrap 

detectors offer  much improved mass resolution, in the 10e50 mDa 
range. FT-ICR detectors have demonstrated mass resolution in the 
single mDa  range or lower. For the m/z ranges commonly observed 
in  small-molecule mass spectrometry (ca.  30  Dae4000  Da),  this 
means each spatial pixel contains ion  intensities at  400,000 or 
more distinct m/z values. Obtainable m/z resolution for  the mass 
analyzers commonly used in MSI is shown on the y-axis of Fig. 1A. 

These high m/z resolving powers and high mass accuracies 
improve but still  do  not fully  solve the  task of  identifying the 
chemical composition of a given ion [6,27]. Fortunately, other mass 
spectrometry tools that ameliorate this problem are  increasingly 
being applied to MSI. 

	
1.2.2.   Tandem mass  spectrometry and  MSn 

Chemical information  on  the molecular structure of  detected 
ions  can  also  be obtained through fragmentation of detected ions, 
and observation of the mass spectrum of the resulting fragments. 
This  process, termed tandem mass spectrometry or  MS2, is ubiq- 
uitous in  the broader MS community but has  seen less  attention 
from  imaging-focused  researchers.  Some instruments have the 
capability to  fragment ions  that are  themselves fragments of  an 
initially detected ion,  and so on  (MSn)  while at  the same time of- 
fering high mass resolution. Instruments capable of MSn analysis up 
to n ¼ 10 are  commercially available. Some imaging applications of 
MS2  have been reported [44],  but in  general this mode of  mass 
spectrometry is not well-explored in MSI applications. 

Depending on how data is acquired, MSn adds dimensionality to 
the collected MSI  images in  several possible ways.  Modern in- 
struments can  obtain MSn  data for fixed, predetermined precursor 



 	
	

m/z values as well as for dynamic precursor m/z values determined 
during data acquisition via  data-dependent fragmentation strate- 
gies.  For example, instruments could be  set  to fragment the most 
abundant MS1  ions  in a given pixel, assuming that the ion  has  not 
already been fragmented in a nearby pixel. Some instruments allow 
further data-dependent  dissection of  MS2   fragments into auto- 
matically chosen and acquired MS3, …, MSn  spectra. These modes 
remain to  be  explored in  MSI.  Using   such, data-depended data 
acquisition strategies results in the generation of varying numbers 
of MSn  spectra at possibly different precursor m/z values at  each 
location. In contrast, when users define a predetermined list of MS1 

ions  they wish to fragment, they can generate target lists of 1e~100 
distinct m/z  values that the instrument will  fragment when 
detected. If these targeted fragmentations are  run at  every spatial 
pixel, there will  be fixed set  of multiple mass spectra for the same 
precursor m/z values at every pixel. 

The  limit on  how many independent mass spectra can  be  ac- 
quired at each pixel is affected by several factors. In theory in- 
strument software can  limit the length of chosen “target lists”,  but 
practically in MSI, sample abundance and depth are likely  limiting, 
as acquiring 100  spectra at each pixel would require (at  least) 100 
separate laser shots. The  assumption that the data obtained from 
the nth shot remains representative of  the sample surface as  it 
existed at the first shot requires empirical validation. 

	
1.2.3.   Ion mobility separation (IMS) 

A long-standing problem of mass spectrometry is that no matter 
how high an  instrument's mass resolution, isomers cannot be 
resolved, because they have the same m/z.  In non-imaging appli- 
cations, isomers can  be  separated before mass spectral analysis, 
usually via  liquid or  gas  chromatography.  Chromatography is not 
possible in  MSI,  but ion   mobility separation  can   resolve some 
isomeric species after  ionization based on  differential mobility of 
ions  being accelerated through a dilute gas  [24,35,49,52]. The rate 
of collisions between ions  and gas molecules depends on molecular 
shape (specifically on collisional cross section), not only  m/z. Thus, 
for every spectral scan at  a particular pixel, IMS introduces a new 
dimension: drift time. In  current commercially available setups, 
ions  take milliseconds to  travel the length of the drift tube. Since 
mass spectra can  be acquired at a microsecond time scales, usually 
at  least 200  spectra can  be  recorded as a function of drift time, at 
every pixel. 

The next few  years of MSI research are  likely  to see  further 
advancements  in   chemical  resolution  ewhether   IMS,  MS2    or 
higher-order fragmentation, or higher-resolution mass analyzers e 
combined with advancements in  spatial resolution. The  implica- 
tions of these developments for the size  of MSI datasets are  shown 
in Fig. 1. The  figure shows the raw (uncompressed, uncentroided) 
dataset size  required to image a single 140  mm by 160  mm cross- 
section (or  series of slices) of a human brain as a function of mass 
resolution and spatial resolution for several distinct scenarios. The 
assumed m/z acquisition range is from 50 Da to 4000 Da. The first 
colorbar shows data sizes for performing a single MS1  scan at each 
pixel. At a  spatial resolution of  10  mm  and a  mass resolution  of 
100,000,  the size  of  the raw data can  approach 1e10  terabytes. 
Adding 10  unique MS2  acquisitions at  each pixel, or  100  bins  of 
time-resolved ion mobility, or both, at each pixel magnifies dataset 
sizes accordingly, with up  to 1e10 petabytes required for such hu- 
man brain-sized analyses. 

The data size  “disaster” can  be ameliorated somewhat by smart 
representation of the obtained data. “Sparse” representations of the 
data e e.g.,  based on  the detection and removal of  data values 
describing background only,  including recording mass spectra in 
centroid rather than profile mode e could slash the size  of  the 
dataset by 3e5 orders of magnitude. However, great care  must be 

taken to avoid the loss  of important information and current soft- 
ware from most major instrument vendors does not permit easy 
“sparsification” of MSI data except in the m/z dimension (i.e. cen- 
troiding). Sparsification in the spatial dimensions or along MS2 or 
ion mobility time dimensions are  not supported in commonly used 
MSI file formats such as *.mzML, *.imzML, although work is ongoing 
in  this area. However,  even if sparse data representations reduce 
datasize by 10,000-fold, Fig. 1 implies that sparse data for a single 
slice  of human brain could be up to 100  GB to 1 TB. Although mere 
storage of  datasets of  this size  can  be  achieved relatively easily, 
sharing the data, as well as browsing, processing, and analyzing it, 
can  be a considerable challenge. 
	
2.  Increasingly diverse applications demand diverse analyses 
	

A second challenge arises from the different meanings that 
“analyzing” data  takes in  different applications of  MSI  [1].  The 
range of biological questions and problems to which MSI is being 
applied means that MSI users must be  able  to  subject MSI data to 
increasingly diverse analysis types. In this section we profile several 
interesting, unique biological problems to which MSI has  recently 
been successfully applied, with an  emphasis on  the data manipu- 
lations required for each problem. 
	
2.1.  Data  reduction via centroiding and  peak  finding 
	

A primary tool for reducing MSI dataset sizes is the centroiding 
of  detected  peaks in   the  m/z dimension. Modern instruments 
include algorithms  for  centroiding during data acquisition, but 
centroiding and peak grouping in MSI present a few  special chal- 
lenges. First,  the m/z centroids found for  the same ion  can  vary 
slightly from pixel to  pixel due to  instrumental noise and drift. 
These slightly different m/z values must  be  associated and cor- 
rected to a single m/z value for downstream statistical analyses to 
correctly use  centroided peak values. This correction of m/z values 
is not well  supported by current analysis tools and can  lead to er- 
rors due to false matching of peaks from different ions that are close 
in m/z. 
	
2.2.  Physiological and  anatomical mapping from spectral signatures 
	

Mass  spectra from distinct tissues types or  organs can  differ. 
Early  MSI investigations manually identified particular ions  whose 
distribution differed across organ types [25],  but computational 
methods have the advantage of  not relying on  manual data in- 
spection, identifying unexpected ions  whose distribution corre- 
sponds  to    sample  physiology.   Unsupervised  and  supervised 
methods have both been used to identify distinct tissues or organs 
based on spectral signatures from the pixels of MSI images. Popular 
unsupervised tools for  this analysis mode include principal com- 
ponents analysis (PCA), k-means clustering, non-negative matrix 
factorization (NMF),  and maximum autocorrelation factor (MAF). 
Supervised tools widely used in  MSI included linear discriminant 
analysis (LDA) or partial least squares analysis (PLS). Several more 
sophisticated techniques adapted to  the specific structure of MSI 
data are  also  being developed [1,3]. 

A thorough and compelling recent example is  provided by 
Hanrieder and coworkers’ study of the effects of the cyanobacterial 
neurotoxin b-N-methylamino-L-alanine (BMAA) on the anatomy of 
rat brains by  TOF-SIMS imaging. MAF was used for  unsupervised 
classification of  brain regions, and also  for  identification of  ions 
whose spatial distribution and amount was changed by BMAA 
exposure relative to controls [14]. 

MSI can also reveal distinct physiological regions of a tissue that 
appear   identical  by    traditional   histological   approaches.   For 



	
	

example, a comparison of six  different unsupervised methods for 
assessment of intra-tumor heterogeneity in human biopsies of 
myxofibrosarcomal lesions revealed that each method gave  distinct 
results [19],  but through “agreement  analysis” intra-tumor het- 
erogeneities that  were robustly identified by  five  of  the tested 
techniques could be identified. 

	
2.3.  Tracking  the  spatial distribution of target molecules 

	
Another important analysis mode relies on  external identifica- 

tion of physiological regions of interest, followed by identifying the 
distribution of specific molecules detected by MSI in these regions. 
An early example was Khatib-Shahidi's study on  the whole-body 
distribution of the antipsychotic benzodiazapene drug olanzapine 
and its metabolites in whole rat  sagittal tissue sections. MSI clearly 
showed concentration of two drug metabolites in the bladder and 
liver,  while the unmetabolized drug was more broadly distributed 
across the body [25].  MSI also  showed that an  inhaled dose of the 
bronchodilator ipratropium  bromide concentrated  in  regions  of 
high inflammation and cell density and away from epithelial tissue 
in airway biopsies from human patients [11]. 

This mode of analysis was also  used to localize the tissue types 
and regions where biosynthesis of naturally produced drug podo- 
phyllotoxin [33].  The drug was known to be naturally produced by 
several species of  the  Podophyllum genus of  eudicot  herbs.  MSI 
showed the drug precursor magnoflorine was concentrated in the 
epidermal tissue and emerging root tips  of P. hexandrum rhizomes, 
but in different regions of P. peltatum rhizomes. These differing 
distributions across species coincided with the tissue distribution 
of  mRNAs  for  two cytochrome P450  enzymes as  determined  by 
microdissection and RT-PCR, thus supporting a role  for these P450s 
in  the biosynthesis of magnoflorine and thus of podophyllotoxin 
[33]. 

Other recent MSI investigations have revealed differences in the 
sub-dermal profiles of the topical anaesthic lidocaine and its  me- 
tabolites in pig  ears [9], as well  as investigating the metabolic in- 
teractions in  live,  mixed-species microbial colonies growing on 
agar plates [57]  at resolutions of ~100  mm. 

These modes of  analysis all  used pre-existing knowledge on 
drug metabolism or  biosynthesis to  target m/z values of interest. 
Tools for automatic identification of ions  whose spatial distribution 
correlates with target ions  (e.g.  LDA or PLS in  the m/z dimension 
rather than the spatial dimension) could help uncover unknown 
metabolites derived from or leading to important drugs. 

	
2.4.  Quantifying the  rates of protein and  metabolite turnover 

	
MSI can  be  coupled with stable isotope labeling strategies to 

study protein and metabolite turnover in  tissue or  biofilm. One 
recent study applied this technique to  study differences in  phos- 
pholipid turnover in  brain tissue sections from mice into which 
tumor lesions were surgically implanted. Five days after switching 
the mice's water supply to an  8%  D2O labeled feed,  MSI analysis 
revealed that phospholipids containing saturated and mono- 
unsaturated fatty acids were synthesized at  faster rates in  tumor 
regions  than  in   non-tumor   regions.  K-means   clustering  also 
revealed variations in  lipid   production  among several different 
types of  non-tumor  regions in  the brain [31].   Isotope  labeling 
coupled to MSI via nanoSIMS also  localized protein turnover to the 
tips  of intracellular stereocilial fibers of inner ear cells of adult mice 
[63]. 

Key  requirements for  analysis of  isotope labeling data in  MSI 
include the ability to  automatically identify peaks in  the m/z 
dimension that are   related by  isotopic substitution.  Such   algo- 
rithms  are   routinely  applied  to  LC-MS  data, but  the  lack   of 

chromatographic separation in  MSI often means that the isotopic 
envelope of  a  given molecular species will  be  overlapping with 
those for  several other molecular species. The  future is  likely  to 
bring different, even more complex analysis types. 
	
3.  OpenMSI þ IPython notebooks enable sharable, 
collaborative data analysis on large scale MSI data sets 
	

Thus  far in this article we  have argued that (i) advancing tech- 
nology is rapidly increasing the size of MSI datasets (Fig. 1a), and (ii) 
the application of MSI to diverse problems in the biological sciences 
necessitates a capability for diverse types of data analysis. OpenMSI 
[46] is a web-based repository of MSI datasets as well  as a platform 
for  data analysis and sharing that addresses both of  these chal- 
lenges. OpenMSI is publically accessible at  https://openmsi.nersc. 
gov  and powered by  supercomputing infrastructure at the  Na- 
tional  Energy Research Supercomputing  Center  (NERSC). NERSC 
runs several world-class supercomputing systems, all of which are 
available to  OpenMSI users. An example is the Edison XC30 com- 
puter, which features 133,824 compute cores, 357  terabytes of 
memory, and 7.56  petabytes of online disk  storage with a peak I/O 
bandwidth of 168  gigabytes (GB) per  second. Edison has  a theo- 
retical peak performance of 2.57  petaflops/second. 

Since  its release in 2013, OpenMSI usage has  increased steadily 
(Fig. 1bed). Over  5 TB of MSI data (a combination of both archived 
raw as  well   as  converted files   using OpenMSI's data  in  HDF5 
format) are  now stored in  OpenMSI. Already more than  1.3  TB of 
MSI and analysis data, stored in  more than 250  HDF5  files  using 
lossless data compression, are  accessible via the web through (i.e., 
the uncompressed, raw data volume is  on  the order of  ~3.5  TB) 
(Fig. 1c,d). 

In addition to  the integrated web-based data sharing, process- 
ing,  and visualization capabilities, OpenMSI provides an  easy-to- 
use,  powerful Web API that enables users to programmatically ac- 
cess data via OpenMSI remotely. OpenMSI's Web API consists of just 
five  simple functions, i) qmetadata to  retrieve metadata only,  ii) 
qmz to retrieve information about data axes,  and iii e v)  qslice, 
qspectrum, and qcube which provide easy-to-use support for  the 
three most common selective read patterns, i.e.,  read ion  image 
slices,  read m/z spectra and read arbitrary subcubes of  the data. 
Together, these functions provide full access to the data, including 
metadata  and  raw  MSI  and  derived  analysis  data.  The   basic 
methods are simple and can be effectively encoded in URL patterns. 
For further  details see  [46]. 

Using the OpenMSI Web API users can access MSI data remotely, 
e.g.,  via  IPython notebooks. IPython notebook  is  a  web-browser 
based interface to  a Python interpreter that facilitates interactive 
coding and code sharing [43].  IPython notebooks combine code 
execution, rich  text, mathematics, plots and rich  media in a single 
environment and provide an agile  tool  for exploratory computation 
and data analysis. Programmable notebooks make scientific anal- 
ysis easily reproducible by combining the state of the analysis, code, 
and  documentation  of  the  analysis steps  in   a  single, human- 
readable document. This interface lowers the barriers for effective 
data manipulation in  Python, permitting users with only  a  basic 
familiarity with Python to perform advanced data analyses. Python 
is a high-level interpreted language with a growing set  of publicly 
available tools for common manipulations of multivariate and im- 
aging data such as  SciPy  [18],  scikit-learn [42],  and scikit-image 
[53]. 

IPython notebooks can  be easily shared and edited via version- 
control systems such as Git (www.github.com). Using the advanced 
collaboration features of GitHub and other online code repositories, 
users can collaborative develop and share analytics, adapt analytics 
for    new   applications,  and   record   the   provenance  of    the 



 	
	

development and changes of analyses. Users without any  pro- 
gramming skills  can  easily view analysis notebooks online using 
only   a  web browser  via  the  IPython tool   nbviewer (nbviewer. 
ipython.org). 

The  combination of  OpenMSI, IPython notebooks, and online 
source code repositories achieves cross-platform, scalable access to 
large MSI datasets, version-controlled sharing of analysis methods, 
and easy public viewing and options (Fig. 2). This workflow enables 
the collaborative development of  sophisticated  workflows for 
analyzing MSI data, whether the end application be in research or 
clinical environments [56]. 

We  here demonstrate the application of  this approach to the 
visualization and analysis of  public OpenMSI data by  clustering- 
and matrix-factorization-based techniques. We  have shared the 
analysis notebooks, which include the analysis code and detailed 
documentation, with the public via  GitHub. No additional data is 
required for interested readers to execute the notebooks as all data 
is retrieved at runtime via OpenMSI. While we  focus  in this article 
on the use  of Python, the proposed approach also  extends directly 
to  other programming languages, e.g.,  R and Julia.  The  recently 
released Jupyter notebook and multi-user server JupyterHub 
(https://jupyter.org/)  have evolved from IPython and provide a 
language-agnostic environment for development of sharable, pro- 
grammable science notebooks. 

	
	

3.1.  Loading  and  viewing OpenMSI data in IPython 
	

A key advantage of using OpenMSI for MSI data analysis is i) that 
only  as much data as is required for the desired analysis needs to be 
loaded to  IPython, ii) selected data subsets can  be  retrieved fast, 
and iii)  users do  not need to share data files  along with analysis 
notebooks, but the data is retrieved on  request via  OpenMSI. For 
plotting of chosen ion images and mass spectra at chosen pixels, the 
full data set  remains stored and accessible at  the OpenMSI server, 
and only chosen data subsets are passed to IPython. The capabilities 
of IPython make it  easy to  generate complex, publication-quality 
data  visualizations. An  IPython notebook  at   http://tinyurl.com/ 
openmsi-nb1 shows how to  load,   plot, and zoom in  on  images 

and spectra from a publicly available OpenMSI dataset, in this case 
for a NIMS image of a mouse brain cross-section acquired using a 
TOF detector  (http://tinyurl.com/openMSI-brain). The  plots pre- 
pared entirely programmatically via  this notebook are  shown in 
Fig. 3 and Fig. 4. 

	
3.2.  K-means clustering on OpenMSI data 
	

To provide an  example of  a  more complex analysis workflow 
using  IPython  notebooks  and  OpenMSI, we   provide  a  second 
notebook at  http://tinyurl.com/openmsi-nb2 that uses the same 
publicly available OpenMSI dataset to perform filtering to eliminate 
pixels where mass spectra arise predominantly from background 
(matrix) ions  or from combinations of background and sample ions. 
Then,   we   apply  non-negative  matrix  factorization  [19]   to the 
filtered data set  to further identify pixels in the “clean” image that 
are  related to each other by spectral similarity. An overview of a set 
of components of the NMF matrix factorization is shown in Fig. 4. A 
similar analysis was recently presented by Yang [61]. 

	
3.3.  Simple  image  registration of MSI and  optical images 
	

The task of finding the best way to “line  up” the multiple images 
of  the same object is known as  “image registration”,  and can  be 
difficult for  tasks where the intensity, contrast, and resolution all 
vary   strongly  between  the  different  images. This   problem  is 
referred to as multimodal image registration, and is a problem for 
comparing ion  images from an  MSI experiment to other image 
sources, such as  optical microscopy.  In a third example at  http:// 
tinyurl.com/openmsi-nb3, we  align an  optical image with an  MSI 
image.  We   use   the  publically available rat  lung  dataset  from 
OpenMSI and an associated image of the same sample obtained by 
optical microscopy. This image is an  “H&E” image, i.e. a histologi- 
cally  fixed sample stained with hematoxylin and eosin and was 
kindly provided by  Dr. Thomas Fehniger (Center of Excellence in 
Biological and Medical Mass  Spectrometry, Lund, Sweden) [54]. For 
users interested in replicating the code, the image will  be provided 
by request. 

	
	

 
	

Fig.  2.  Illustration of  the workflow for  customizable mass spectrometry  imaging analysis using OpenMSI and sharable IPython analysis notebooks. Panel A represents mass 
spectrometry image acquisition; data is generated that is often tens of GB or more per file. This data is transferred to OpenMSI, visualized with web browser based tools, and shared 
with users of OpenMSI (Panel B). IPython notebooks and the OpenMSI web API enable a scientist to remotely perform advanced programmable analytics (Panel C). Notebooks are 
easily sharable via  public version-control tools such as GitHub and can  be  developed collaboratively. Since data is accessed on-demand via OpenMSI's API, sharing notebooks does 
not require copying or  duplicating data. 
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Fig. 3. Ion images and spectra created programmatically from a publicly available OpenMSI dataset  using the !Python notebook at http:jjtinyurl.comjopenmsi-nb1. (A) Ion images. 
The raw ion images are shown in row A. In row B the same ions are normalized  by the total intensity of just the chosen ions. Row Cis a contrast-enhanced version of Row Bin which 
high intensities  are compressed, allowing the colormap to show more variation among low-intensity  regions. Black dots on each image can annotate  pixel locations of interest. (D) 
and (E) Mass spectra for the locations marked with black dots in (A). The mjz regions integrated  to form the ion images in (A) are highlighted in gray. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 



	
	

 
	

Fig.  4.  Programmatic visualization illustrating the use of  dimensionality reduction using non-negative matrix factorization (NMF)  on  publicly available OpenMSI data using an 
IPython notebook (http://tinyurl.com/openmsi-nb2).  (A, B, and C):  visualization of  the first three NMF  components showing the spatial component coefficients. (D, E, and F): 
Spectrum of ion-component  coefficients (loadings) of m/z values for  the first three NMF components, following [61]. 

	

	
4.  Conclusions 

	
In  this article we  have demonstrated that improving instru- 

mental technology is increasing the size of MSI datasets. This trend 
is driven by increasing spatial resolution accessible via MALDI, ion 
microscopy,  DESI, and other techniques, and also  by  increasing 
chemical resolution  via  the use   of  higher-resolution mass ana- 
lyzers, as well as increased use  of MS2 and ion mobility separation. 
We  have also  shown that MSI is being applied to  an  increasingly 
diverse set  of problems in the biological sciences. This  in turn re- 
quires a capability for easy performance of diverse types of analysis 
on MSI data. OpenMSI can  store large MSI datasets and allow easy 
browsing and inspection via  the web. When used in  conjunction 
with IPython notebooks, all  of  the advanced data processing ca- 
pabilities of Python, SciPy, and scikit-image, scikit-learn, and scikit- 
statmodels  and many other  available analysis packages can   be 
easily applied to MSI data. OpenMSI allows easy sharing of MSI via 
the web. When coupled with the IPython notebook concept, com- 
plex analyses on MSI data can  also  be easily shared, reviewed, and 
collaboratively develop by multiple investigators, labs,  and all 
members of the growing MSI community. While we  focused in this 
article on  IPython notebooks, the recent development of  Jupyter 
allows the direct extension of  the proposed approach to  other 

programming languages, such as R and Julia. For these reasons, we 
hope these and similar tools (e.g., http://www.maldi-msi.org/) will 
be increasingly used by scientists interested in MSI. 
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